If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-20X+100=17
We move all terms to the left:
X^2-20X+100-(17)=0
We add all the numbers together, and all the variables
X^2-20X+83=0
a = 1; b = -20; c = +83;
Δ = b2-4ac
Δ = -202-4·1·83
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{17}}{2*1}=\frac{20-2\sqrt{17}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{17}}{2*1}=\frac{20+2\sqrt{17}}{2} $
| 4x+1/3=2x-1/4 | | 127p=550 | | 4.5x-8=0.5x | | 550/127=p | | 25/15=x/5 | | X^2-8x=36 | | (x/12.5)*0.96=24 | | 1/5(x=0.5)5.24=3/2x+7/10(x+2.2) | | 14n+48=20n,n | | 2{3}-2{4x}+7=0 | | (x/12.5)*0.8=24 | | 2m+0.5=1.7 | | −4x−6=−5+2 | | 9x+4x-8x=14+1 | | 75x-1=492(x-1) | | 8=43x | | 21*3=g | | 10x+15=65 | | -21/10+3/2n=-6/85 | | 150+10p=150+4p | | 3x-7x-8x=6+4 | | +=-9-11x=68 | | 4x+-2=22-8x | | 5=1/7w | | 0.4(4s+4)=4.8 | | 120p+10=150p+4 | | 3x+7x-8x=12+2 | | 3t^2-9t-5=0 | | 40=12+4*n | | 27=-5(x-2)+x+1 | | 5=6v-v | | 2(2.2x-2.85)=1.1x+9.15 |